

MLT: Example

example 2.1(page 31) of text book

- batch size(Q) = 50 units
- number of operations (n_m) = 8
- average setup time $(T_{su}) = 3 h$
- average operation time per machine(T_o) = 6 min
- average non-operation time(T_{no}) = 7 h

how many days to produce a batch?

solution:

- MLT = 8 (3 + 50* (6/60) + 7) = 120 h
- At 7 h per day, this leads to 120/7 = 17.14 days

	MLT: Example							
unsolved example 2.1, part (a)(page 42) of text book								
	machine	Setup time (h)	operation time (min)	operation time (h)				
	1	4	5.0	0.083				
	2	2	3.5	0.058				
	3	8	10.0	0.167				
	4	3	1.9	0.032				
	5	3	4.1	0.068				
	6	4	2.5	0.042				
batch avera MLT = =	batch size(Q) = 100 units average non-operation time per machine (T_{noi}) = 12 h MLT = $\sum (T_{sui} + QT_{oi} + T_{noi})$, i = 1,2,3,, 6 = (4 + 100*.083 + 12) + (2 + 100*.058 + 12) + (8 + 100*.167 + 12) + (3 + 100*.032 + 12) + (3 + 100*.068 + 12) + (4 + 100*.042 + 12) = 141 h							

Production Concepts and Mathematical Models - examples

example 2.2(page 34) of reference book					
number of machines (W) - 6	Number of shifts per week $(S_w) - 10$				
number of hours per shift (H) $- 6.4$	production rate (R _p)– 17 units /h				
find capacity (PC) !					
Solution:					
PC = WS _w HR _p = 6*10*6.4*17 = 6528 units / week					
example 2.4(page 36) of reference book					
number of hours per week – 65	production rate (R _p)– 20 units /h				
number of good parts produced - 1000					
find capacity (PC) ! and utilization (U)					
Solution:					
(a) PC = 65*20 = 1300 units per week					
(b) Utilization (U) = number of parts made / capacity = 1000/1300 = 76.92%					

Production Concepts and Mathematical Models - examples

example 2.5 (page 42) of reference book average setup time $(T_{su}) = 5 h$ **u** number of machines in the plant = 18• average batch size(Q) = 25 parts **u** number of machines used for batch processing $(n_m) = 6$ • average operation time $(T_0) = 6 \text{ min} = .1 \text{ h}$ **average non-operation time per batch** $(T_{no}) = 10 h$ number of new batches of parts launched per week = 20 **D** plant operation average $(S_wH) = 70$ h per week Soution: a) $MLT = n_m (T_{su} + QT_o + T_{no}) = 6*(5 + 25*.1 + 10) = 105 h$ b) Plant capacity = $WS_wHR_p / n_m = (18*70*R_p)/6$ batch time per machine = $T_{su} + QT_{o} = 5 + 25^{*}.1 = 7.5 \text{ h}$ $T_p = 7.5 / 25 = 3/10 = .3 h$ $R_{\rm p}^{'} = 1/T_{\rm p} = 1/.3 = 10/3$ Plant Capacity = (18 * 70 *10)/(6*3) = **700** parts/week c) Utilization (U) = output/capacity = (25*20)/(700) = 71.43%

fundamental strategies to improve productivity

these strategies are often implemented by automation, hence automation strategies

Automation Strategy 1 – Specialization of Operations

- use of specific equipment designed to perform one operation with the greatest possible efficiency
- similar to labor specialization, which was employed to improve labor productivity
- □ effect: Reduce T_o
- example: automated welding machines

http://www.hollbrit.com/Products_04B.html