COMPUTERS IN MANUFACTURING ENTERPRISES

PRODUCTION CONCEPTS AND MATHEMATICAL MODELS AUGUST 13, 2015

Vandana Srivastava

Introduction

\square production is:
\square it consists of a series of individual steps: processing and assembly operations
\square activities in production :

- Operations: takes place when a product is at the production machine
- Non-operations: handling, storage, inspections and other sources of delay
\square let:
- T_{0} - time per operation at a given machine
- T_{no} - non-operation time at the same machine
- n_{m} - number of machines or operations through which the product must pass for complete processing
- if there is a batch production, then let Q units are there in the batch of the product
- T_{su} : set - up time (procedure required to prepare each production machine for a particular product)

Manufacturing Lead Time (MLT)

$M L T=\sum\left(T_{\text {sui }}+Q T_{\text {oi }}+T_{\text {noi }}\right), i=1,2,3, \ldots \ldots ., n_{m}$
(does not include time the raw work part spends in storage before production begins)

- If all times are equal, then:

MLT $=n_{m}\left(T_{\text {su }}+Q T_{o}+T_{n o}\right)$
(under the assumption that Q and n_{m} are same for all products)

- in reality, these terms vary by product, so a weighted average values of all the terms is used

Manufacturing Lead Time (MLT)

MLT for production:

- iob shop $(Q=1)$

$$
\begin{equation*}
\text { MLT }=n_{m}\left(T_{\text {sut }} T_{o}+T_{n o}\right) \tag{3}
\end{equation*}
$$

- mass production (Q is very large)

$$
\begin{equation*}
\text { MLT } \approx Q T_{0} \tag{4}
\end{equation*}
$$

\qquad

- quantity-type mass production (large number of units are produced on same machine),

$$
\begin{equation*}
\text { MLT = } \mathrm{T}_{\mathrm{o}} \tag{5}
\end{equation*}
$$

- flow-type mass production (physical flow of products in oil-refineries/food processing etc or the products which are made to move through a sequence of operations by a material handling device like conveyor belt)

$$
\text { MLT }=\mathrm{n}_{\mathrm{m}}\left(\text { transfer time }+ \text { longest } \mathrm{T}_{\circ}\right)
$$

- the entire production line is set up in advance -> $\mathrm{T}_{\mathrm{su}}=0$
- non-operation time between processing steps $->$ time to transfer the product from 1 machine or workstation to the next
- if the workstations are integrated so that the parts are being processed simultaneously at each station, the station with the longest operation time will determine the MLT value

MLT: Example

example 2.1 (page 31) of text book

- batch size $(Q)=50$ units
\square number of operations $\left(n_{m}\right)=8$
\square average setup time $\left(T_{s u}\right)=3 \mathrm{~h}$
- average operation time per machine $\left(T_{0}\right)=6 \mathrm{~min}$
\square average non-operation time $\left(T_{\text {no }}\right)=7 h$
how many days to produce a batch?
solution:

$$
M L T=8\left(3+50^{*}(6 / 60)+7\right)=120 h
$$

At 7 h per day, this leads to $120 / 7=17.14$ days

MLT: Example

unsolved example 2.1, part (a)(page 42) of text book

machine	Setup time (h)	operation time (min)	operation time (h)
1	4	5.0	0.083
2	2	3.5	0.058
3	8	10.0	0.167
4	3	1.9	0.032
5	3	4.1	0.068
6	4	2.5	0.042

batch size $(Q)=100$ units
average non-operation time per machine $\left(T_{\text {noi }}\right)=12 \mathrm{~h}$
$M L T=\sum\left(T_{\text {sui }}+Q T_{\text {oi }}+T_{\text {noi }}\right), \quad i=1,2,3, \ldots \ldots, 6$
$=(4+100 * .083+12)+(2+100 * .058+12)+(8+100 * .167+12)$
$+(3+100 * .032+12)+(3+100 * .068+12)+(4+100 * .042+12)$
$=141 \mathrm{~h}$

Production Rate

$\square \quad$ production rate (units of product per hour), denoted by R_{p}

- for batch production:
batch time per machine $=T_{s u}+Q T_{0}$ \qquad (1)
if Q is desired quantity to be produced and q is scrap rate, then:
initial quantity should be $Q /(1-q)$, so:
batch time $/$ machine $=T_{s u}+(Q /(1-q)) T_{0}$ \qquad
$\square \quad$ average production time per unit of product for the given machine

$$
\begin{equation*}
T_{\mathrm{p}}=\text { (batch time / machine) } / Q \text { and } \tag{3}
\end{equation*}
$$

$R_{p}=1 / T_{p}$
\square for job shop production $(Q=1), T_{p}=T_{s u}+T_{0}=>R_{p}=1 /\left(T_{s u}+T_{0}\right)$
\square for quantity-type mass production: $\mathbf{R}_{\mathbf{p}}=\mathbf{1} / \mathbf{Q} \mathbf{T}_{\mathrm{o}}$ (neglecting set up time)

Production Concepts and Mathematical Models

components of the operation time (T_{0})

\square time an individual work part spends on a machine
\square not all of this time is productive
\square example: machining operation (discrete parts manufacturing)
$\square T_{0}$ for a machining operation is composed of:

- the actual machining time T_{m}
- the work piece handling time T_{h}
- any tool handling time per work piece $\mathrm{T}_{\text {th }}$
\square Hence:

$$
-T_{o}=T_{m}+T_{h}+T_{t h}
$$

Capacity or Plant Capacity

\square maximum rate of output that a plant (or other production facility) is able to produce under a specified set of operating conditions
\square closely related to production rate
refers to no of shifts per day, no of days in the
\square example: for an automobile assembly plant, capacity is typically defined as one shift, but with an allowance for overtime
\square usually measured in terms of the type of output produced by the plant (e.g. tons of steel for a steel factory, barrels of oil for a oil refinery etc)
\square if output units are non-homogeneous, input units are used to define (e.g. a job-shop may use available labor hours or available machine hours to measure capacity)

Capacity or Plant Capacity

let-

- PC be the plant capacity of a given work center or group of work centres under consideration
- capacity will be measured as the number of good units produced per week
- W be the number of work centres:
- production system, typically consisting one worker and one machine OR
- one automated machine with no worker OR
- several workers working together on a production line
- R_{p} is the production rate (provision for setup time is included)
- H hours per shift is the time for work centres to operate (excludes time for delays, machine breakdown, repairs and maintainance, etc)
- S_{w} is the number of shifts per week (or other suitable time period for plant)

$$
P C=W S_{w} H R_{p}
$$

assuming that the units produced through the work centres are homogeneous $->R_{p}$ is same for all units produced

Capacity or Plant Capacity

capacity or plant capacity

batch production plant (each product is routed through n_{m} machines), then: $P C=W S_{w} H R_{p} / n_{m}$

iven a certain hourly production rate, the
capacity can be adjusted up / down in 3 ways:

1. changing the number of work centres in the shop, W

-- can be used to determine how resources may be allocated to meet a certain weekly demand requirement
-- D_{w} : demand rate for the week (number of units required)
-- replacing PC by $D_{w,}$

$$
W S_{w} H=D_{w} n_{m} / R_{p}
$$

2. changing the number of shifts per week, S
3. changing the number of hours worked per shift, H
If production rates differ, the equation becomes
$W_{w} \mathbf{H}=\sum D_{w} n_{m} / R_{p}$

Utilization(U)

- amount of output of a production unit relative to its capacity

U = output / capacity
\square usually expressed as a percentage
\square can be used for an entire plant, a single machine in the plant, or any other productive resource(e.g. labor)
\square can also be defined as the proportion of time that the facility is operating relative to the time available in capacity

Production Concepts and Mathematical Models - examples

example 2.2(page 34) of reference book

number of machines (W) - 6
number of hours per shift $(\mathrm{H})-6.4$
find capacity (PC)!
Solution:

$$
P C=W S_{w} H R_{p}=6^{*} 10 * 6.4^{*} 17=6528 \text { units } / \text { week }
$$

example 2.4(page 36) of reference book
number of hours per week $-65 \quad$ production rate $\left(R_{p}\right)-20$ units $/ h$
number of good parts produced - 1000
find capacity (PC) ! and utilization (U)
Solution:
(a) $\quad P C=65^{*} 20=1300$ units per week
(b) Utilization (U) = number of parts made $/$ capacity $=1000 / 1300=\mathbf{7 6 . 9 2} \%$

Production Concepts and Mathematical
 Models - examples

example 2.3 (page 35) of reference book
number of machines $\left(n_{m}\right)$ - 1
Number of shifts per week $\left(S_{w}\right)-10$
number of hours per shift (H) - 6.5 h on each work centre for each shift

product	weekly demand	production rate (units / h)
1	600	10
2	1000	20
3	2200	40

Determine the number of work centres required to satisfy this demand!
solution

$$
W_{w} H=\sum D_{w} n_{m} / \mathbf{R}_{p}
$$

$$
=600 / 10+1000 / 20+2200 / 40=165 h
$$

$$
W=165 / S_{w H}=165 /(10 * 6.5)=2.54 \text { work }
$$

centres
$W \approx 3$

Production Concepts and Mathematical Models - examples

example 2.5 (page 42) of reference book

\square average setup time $\left(T_{\text {su }}\right)=5 \mathrm{~h}$

- number of machines in the plant $=18$
\square average batch size(Q) $=25$ parts
- number of machines used for batch processing $\left(n_{m}\right)=6$
\square average operation time $\left(T_{0}\right)=6 \mathrm{~min}=.1 \mathrm{~h}$
\square average non-operation time per batch ($\mathrm{T}_{\text {no }}$) $=10 \mathrm{~h}$
- number of new batches of parts launched per week $=20$
- plant operation average $\left(\mathrm{S}_{\mathrm{w}} \mathrm{H}\right)=70 \mathrm{~h}$ per week

Soution:
a) $M L T=n_{m}\left(T_{s u}+Q T_{o}+T_{n o}\right)=6^{*}\left(5+25^{*} .1+10\right)=105 \mathrm{~h}$
b) Plant capacity $=W_{\mathrm{w}} \mathrm{HR}_{\mathrm{p}} / \mathrm{n}_{\mathrm{m}}=\left(18^{*} 70^{*} \mathrm{R}_{\mathrm{p}}\right) / 6$
batch time per machine $=\mathrm{T}_{\mathrm{su}}+Q \mathrm{~T}_{\mathrm{o}}=5+25^{*} .1=7.5 \mathrm{~h}$

$$
\mathrm{T}_{\mathrm{p}}=7.5 / 25=3 / 10=.3 \mathrm{~h}
$$

$$
R_{p}=1 / T_{p}=1 / .3=10 / 3
$$

Plant Capacity $=(18 * 70 * 10) /(6 * 3)=700$ parts $/$ week
c) Utilization $(U)=$ output $/$ capacity $=(25 * 20) /(700)=\mathbf{7 1 . 4 3} \%$

Production Concepts and Mathematical Models

Work-in-process (WIP)

\square amount of product currently in factory that is:

- either being processed or
- in between processing operations
\square inventory being transferred from raw material to finished product
\square can be obtained by:
WIP $=\left(\mathbf{P C}^{*} \mathbf{U}\right) *($ MLT $) /\left(\mathbf{S}_{\mathbf{w}} \mathbf{H}\right)$ where WIP is number of units in process
\square equals to rate at which the parts flow, multiplied by MLT
\square represents an investment by the firm which can not be turned into profit until processing is complete
\square major costs are incurred by the firms due to high WIP

Automation Strategies

\square fundamental strategies to improve productivity
\square these strategies are often implemented by automation, hence automation strategies

Automation Strategy 1 - Specialization of Operations

\square use of specific equipment designed to perform one operation with the greatest possible efficiency
\square similar to labor specialization, which was employed to improve labor productivity
effect: Reduce $\mathrm{T}_{\text {。 }}$
\square example: automated welding machines

http://www.hollbrit.com/Products_04B.html

